Dopamine and Alcohol Dependence: From Bench to Clinic

Home / Sober living / Dopamine and Alcohol Dependence: From Bench to Clinic

how does alcohol affect dopamine

These results provided rational for a randomized placebo‐controlled clinical trial in alcohol‐dependent individuals. The development of positron imaging technique (PET) and the radiotracer 11C‐raclopride in the 1990s made it possible to study in vivo dopamine function in humans. A series of human imaging studies over the last decade have demonstrated that alcohol [93, 94] as well as other drugs of abuse [95] increase striatal dopamine release.

Indeed, our analysis of dopamine transient dynamics revealed faster dopamine uptake in caudate and putamen of alcohol-consuming female, but not male, macaques. Thus, any apparent dopamine uptake differences in the male macaque groups presented here are a function of faster clearance times due to decreased dopamine release and not faster dopamine clearance rates per se. Interestingly, across multiple studies, chronic alcohol use resulted in enhanced dopamine uptake rates, though this effect has been found to vary between species and striatal subregions (for review, see [10]). Nonetheless, our observed adaptations in dopamine uptake may contribute to the apparent changes in dopamine release following long-term alcohol consumption.

Gene expression analyses

Finally, we found that blockade of nicotinic acetylcholine receptors inhibited evoked dopamine release in nonhuman primates. Altogether, our findings demonstrate that long-term alcohol consumption can sex-dependently alter dopamine release, as well as its feedback control mechanisms in both DS subregions. Emerging data suggests that the activity of dopamine neurons in the VTA projecting to the NAc is regulated by several afferents, such as, for example the cholinergic neurons projecting from the laterodorsal tegmental nucleus (LDTg) (for review see [204]). Although alcohol’s direct interaction with this cholinergic‐dopaminergic reward link remains to be fully elucidated, a study show that voluntary alcohol intake in high‐alcohol‐consuming rats causes a concomitant release of ventral tegmental acetylcholine and accumbal dopamine [39]. These nAChR antagonists are limited in a clinical setting due to low blood–brain barrier permeability and an unfavourable side effect profile.

Furthermore, the specific neuronal circuitries were progressively mapped with major projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc, i.e. the ventral striatum), the prefrontal cortex (PFC) and amygdala. Collectively, this network of neurons was denominated the mesocorticolimbic dopamine system [12, 13]. In addition, there are dopamine projections from the VTA to the amygdala and the hippocampus, respectively, involved in reward associative learning and declarative memory formation [15, 17]. Dopamine is a neuromodulator that is used by neurons in several brain regions involved in motivation and reinforcement, most importantly the nucleus accumbens (NAc). Dopamine alters the sensitivity of its target neurons to other neurotransmitters, particularly glutamate. Dopamine-containing neurons in the NAc are activated by motivational stimuli, which encourage a person to perform or repeat a behavior.

how does alcohol affect dopamine

Alcohol’s Actions as a Reinforcer: Dopamine’s Role

Apart from the dopamine pathways, the addiction to alcohol has also been suggested through the serotonin pathways. Serotonin is another neurotransmitter that is affected by many of the drugs of abuse, including cocaine, amphetamines, LSD and alcohol. Raphe nuclei neurons extend processes to and dump serotonin onto almost the entire cyclobenzaprine interactions with alcohol brain, as well as the spinal cord. Serotonin plays a role in many brain processes, including regulation of body temperature, sleep, mood, appetite and pain. Problems with the serotonin pathway can cause obsessive-compulsive disorder, anxiety disorders and depression.

However, principle of aa when it comes to dopamine levels and addictive substances, alcohol behaves somewhat differently than other substances or pharmaceuticals. In a retrospective study of 151 schizophrenic patients with alcohol dependence, 36 patients received the atypical antipsychotic medication clozapine. At the 6‐month follow‐up, 79% of the patients on clozapine were in remission from a diagnosis of alcohol dependence, while approximately 33% of those not taking clozapine were in remission [148].

Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor

  1. In the dopaminergic pathway, one such gene is a dopamine receptor D2 (DRD2) which codes for a receptor of dopamine.
  2. Alcohol is thus, all pervasive and is in this way is the most dangerous drug known to mankind.
  3. We also offer other amenities such as dietician-prepared meals, mindfulness-based meditation training, outings, and fitness training.
  4. In addition, those individuals may be predisposed to drink more heavily and develop an alcohol addiction.

Specifically, rats voluntarily self‐administer alcohol, as well as acetaldehyde (an alcohol metabolite) into the posterior, but not anterior, part of the VTA [80–85], indicating that alcohol is reinforcing only within the posterior VTA. In corroboration are the findings that the sensitivity of the posterior VTA to the reinforcing effects of alcohol is enhanced in alcohol‐preferring rats [88]. There are, however, some contradicting results indicating that these subregion‐specific effects might be related to the administered dose of alcohol, the use of various methods, the rat strains across the studies as well as differences in coordinates used for local injections (within the anterior VTA). It should also be noted that in both outbreed as well as alcohol‐preferring rats, there are studies showing no influence on the accumbal dopamine levels regardless of dose of alcohol or location in the VTA [59, 91]. Collectively, these data suggest that VTA is a heterogeneous area that differs in morphology and topography (for review, see [92]), and the anterior/posterior and lateral/medial part have different functions regarding alcohol and its activation of the mesolimbic dopamine system.

In a study conducted by,[65] which looked at the data collected from a large number of multiplex, alcoholic families under the COGA, no association was found between the GABRA1 and GABRA6 markers and AD. Similarly, another study conducted by[66] found no association between the genes encoding GABRA1 and GABRA6 with alcoholism. Some addictive substances affect dopamine directly, whereas alcohol and other drugs have an indirect effect. Some experiments found no difference in DA release in the NAc after intraperitoneal injection of ethanol between P and NP rats. For example, Yoshimoto and colleagues[11] and Gongwer and colleagues[23] found that although HAD and LAD rats differed in their basal level of extracellular DA, they did not differ in CNS DA release after intraperitoneal injection of ethanol. Similarly, Kiianmaa and colleagues[28] found no differential increase of extracellular DA concentration in the NAc between AA and ANA rats after microdialysis of ethanol.

Cellular Actions of Dopamine

Alcohol dependence is a chronic relapsing psychiatric disorder significantly contributing to the global burden of disease [1] and affects about four percent of the world’s population over the age of 15 (WHO). In the fifth edition of the diagnostic and statistical manual of mental disorders (DSM), the term alcohol use disorder was introduced and grossly defined as problem drinking that has become severe. The characteristics of this disorder include loss of control over alcohol intake, impaired cognitive functioning, negative social consequences, physical tolerance, withdrawal and craving for alcohol. To date, there are three medications approved by both the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) for the treatment of alcohol dependence; disulfiram, naltrexone and acamprosate.

Throughout the striatum, dopamine release is generally decreased following chronic alcohol use or treatment. In contrast to the dorsal striatum, dopamine release in the NAc is increased following chronic alcohol use in male cynomolgous macaques [22, 24]. The current study indicates that long-term alcohol consumption decreased dopamine release in the putamen of male rhesus macaques (regardless of abstinence status) and in the caudate of the multiple abstinence monkeys. Interestingly, we found an increase in dopamine release in the caudate and no change in the putamen of female macaque drinkers. The effects of these alcohol-induced changes in dopamine release must be considered with other factors contributing to dopamine signaling (e.g., dopamine uptake/transporter activity). Alcohol dependence, a chronic relapsing psychiatric disorder, is a major cause of mortality and morbidity.

We further explored the effect of long-term ethanol consumption on striatal cholinergic systems by examining gene expression of several nAChR subunits (α4, α5, α7, and β2) and markers for cholinergic interneurons (ChAT and vAChT). We found no significant differences in ChAT or vAChT expression between control and alcohol treated subjects, suggesting that long-term alcohol consumption does not adversely affect cholinergic interneurons. This may be due to the ubiquitous expression of nAChRs in the striatum which would limit our ability to detect changes in specific cell types. Nonetheless, further work and more subjects per group (particularly in female subjects) are required to determine if the alcohol-induced changes in dopamine release are attributable to changes in the function of the gas x and alcohol interaction presynaptic dopamine terminal or other factors that indirectly modulate dopamine release. One factor contributing to the development of AUD may be the change in synaptic signaling in the caudate and putamen that could contribute to a bias toward sensory-motor circuit control of behavior and inflexible alcohol consumption [33, 34]. As an important regulator of behavioral output, dysregulation of dopamine neurotransmission is implicated in theories of AUD development [13, 16, 35].

The study was conducted by[68] and the study found that short alleles were significantly less frequent among AD subjects. The study concludes by stating that it was the 1st time that such an association was found with the stated polymorphism and AD. A study conducted by[39] to assess the association of Taq1A polymorphism and AD in south Indian population yielded negative results.[40,41] also did not find any association with Taq1A polymorphism and AD amongst Mexican-Americans. The Taq1A allele frequency of non-assessed controls was more than that of non-assessed alcoholics.

4, the final quinpirole treatment time points (i.e., after 30 min in quinpirole) were analyzed with a two-factor ANOVA (treatment group and region). Ethanol is a liposoluble neurotropic substance which penetrates the blood-brain barrier and inhibits central nervous system (CNS) functions; it is directly toxic to the brain. The etiology and pathology of alcohol dependence is the outcome of a complex interplay of biological, psychological and socio-environmental factors. Dopamine’s effects on neuronal function depend on the specific dopamine-receptor subtype that is activated on the postsynaptic cell.